Predicting and Analyzing CO2 Emissions Based on an Improved Least Squares Support Vector Machine
نویسندگان
چکیده
منابع مشابه
Least Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملOPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE
A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...
متن کاملStudy of Emotion Recognition Based on Surface Electromyography and Improved Least Squares Support Vector Machine
In order to improve human-computer interaction (HCI), computers need to recognize and respond properly to their user’s emotional state. This paper introduces emotional pattern recognition method of Least Squares Support Vector Machine (LS_SVM). The experiment introduces wavelet transform to analyze the Surface Electromyography (EMG) signal, and extracts maximum and minimum of the wavelet coeffi...
متن کاملSparse least squares Support Vector Machine classifiers
In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equalit y constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. Ho wever, a d r a wback is that sparseness is lost in the LS-SVM ...
متن کاملSparse Least Squares Support Vector Machine Classiiers
In least squares support vector machine (LS-SVM) classi-ers the original SVM formulation of Vapnik is modiied by considering equality constraints within a form of ridge regression instead of inequality constraints. As a result the solution follows from solving a set of linear equations instead of a quadratic programming problem. However, a drawback is that sparseness is lost in the LS-SVM case ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polish Journal of Environmental Studies
سال: 2019
ISSN: 1230-1485,2083-5906
DOI: 10.15244/pjoes/94619